State variables

Table 16: Geometrical state variables.

SymbolDescriptionUnit
$D$Stem diameter at breast height$\text{m}$
$H$Height$\text{m}$
$C_{D}$Crown diameter$\text{m}$
$C_{L}$Crown length$\text{m}$
$C_{A}$Crown projection area$\text{m}^2$
$B$Aboveground biomass$t_{\text{ODM}}$
$LAI$Leaf area index-
$\Delta B$Biomass increment per time step$t_{\text{ODM}}$
$\Delta D$Diameter increment per time step$\text{m}$

Table 17: Recruitment and establishment state variables.

SymbolDescriptionUnit
$N_{\text{pool}}$Seed pool (i.e number of seeds)$\tfrac{1}{\text{patch}}$
$N_{\text{germ}}$Number of successfully germinated seeds$\tfrac{1}{\text{patch}}$
$N_{\text{est}}$Number of successfully established seedlings$\tfrac{1}{\text{patch}}$
$x_{\text{ind}}$, $y_{\text{ind}}$Random position of a mother tree on a patch-
$x_{\text{seed}}$, $y_{\text{seed}}$Position of a dispersed seed-
$I_{\text{floor}}$Percentage of incoming irradiance at floor$\%$

Table 18: Mortality state variables.

SymbolDescriptionUnit
$M_{D}$Mortality rate dependent on stem diameter$\tfrac{1}{\text{yr}}$
$M_{I}$Mortality rate dependent on stem diameter increment$\tfrac{1}{\text{yr}}$
$M$Mortality rate affecting individuals each time step$\tfrac{1}{\text{yr}}$
$m_{\text{frag}}$Factor changing the mortality rate $M$ due to fragmentation-
$CCA_{i}$, $i = 1$, $...$, $\#_{\text{layer}}$Cumulative crown area per height layer-
$l_{\text{min}}$, $l_{\text{max}}$Lower and upper height layer covered by the crown of a single individual-
$R_{c}$Individual crowding reduction factor-
$N_{C}$Number of individuals dying due to crowding$\tfrac{1}{\text{cohort}}$
$N_{Y}$Number of individuals dying due to mortality per time step$\tfrac{1}{\text{cohort}}$
$N$Number of alive individuals$\tfrac{1}{\text{cohort}}$
$\Delta _{rM}$Auxillary variable-
$N_{F}$Number of individuals affected by a falling tree-

Table 19: Light climate and growth state variables.

SymbolDescriptionUnit
$\overline{L_i}$Individual leaf area contribution to height layer $i$$\text{m}^2$
$\widehat{L_i}$Patch-based leaf area index-
$I_{\text{ind}}$Incoming irradiance on top of an individual$\tfrac{\mu\text{mol}_{\text{photon}}}{{\text{m}^2}\text{s}}$
$I_{\text{leaf}}$Incoming irradiance on top of the leaf surface (absorbable radiation)$\tfrac{\mu\text{mol}_{\text{photon}}}{{\text{m}^2}\text{s}}$
$P_{\text{ind}}$Gross photosynthetic rate of an individual$\tfrac{\mu\text{mol}_{\text{CO}_2}}{\text{yr}}$
$P_{\text{leaf}}$Gross photosynthetic rate of a single leaf$\tfrac{\mu\text{mol}_{\text{CO}_2}}{\text{m}^2\text{s}}$
$GPP$Gross productivity of an individual (possibly reduced)$\tfrac{t_{\text{ODM}}}{\text{yr}}$
$R_{m}$Maintenance respiration$\tfrac{t_{\text{ODM}}}{\text{yr}}$
$r_{m}$Maintenance respiration rate$\tfrac{1}{\text{yr}}$

Table 20: Water module state variables.

SymbolDescriptionUnit
$\Theta_{\text{soil}}$Soil water content$\tfrac{\text{mm}}{\text{h}}$
$IN$Interception$\tfrac{\text{mm}}{\text{h}}$
$RO$Run-off$\tfrac{\text{mm}}{\text{h}}$
$RO_{\rightarrow}$Surface run-off$\tfrac{\text{mm}}{\text{h}}$
$RO_{\downarrow}$Sub-surface run-off$\tfrac{\text{mm}}{\text{h}}$
$TR$Transpiration$\tfrac{\text{mm}}{\text{h}}$
$\phi_{W}$Reduction factor of $GPP$ due to limited soil water-

Table 21: Temperature state variables.

SymbolDescriptionUnit
$\phi_{\text{act}}$Length of vegetation period$\text{d}$
$\phi_{T}$Limitation factor of $GPP$ by temperature-
$\phi_{T,l}, \phi_{T,h}$Inhibition factors for low and high temperatures-
$\kappa_{T}$Factor affecting maintenance respiration rate $r_{M}$ by temperature-

Table 22: Carbon cycle state variables.

SymbolDescriptionUnit
$S_{\text{dead}}$Carbon stock of deadwood$\tfrac{t_C}{\text{patch}}$
$S_{\text{slow}}$Carbon amount of slow decomposing soil stock$\tfrac{t_C}{\text{patch}}$
$S_{\text{fast}}$Carbon amount of fast decomposing soil stock$\tfrac{t_C}{\text{patch}}$
$S_{\text{mort}}$Carbon amount of individuals dying within the current time step$\tfrac{t_C}{\text{patch}}$
$t_{S_{\text{dead}}\rightarrow A}$Transition rate of carbon from deadwood stock $S_{\text{dead}}$ to atmosphere $A$$\tfrac{t_C}{\text{patch}}$
$t_{S_{\text{slow}}\rightarrow A}$Transition rate of carbon from slow decomposing soil stock $S_{\text{dead}}$ to atmosphere $A$$\tfrac{t_C}{\text{patch}}$
$t_{S_{\text{fast}}\rightarrow A}$Transition rate of carbon from fast decomposing soil stock $S_{\text{dead}}$ to atmosphere $A$$\tfrac{t_C}{\text{patch}}$
$t_{S_{\text{dead}}\rightarrow}$Transition rate of carbon from deadwood stock $S_{\text{dead}}$ to soil$\tfrac{t_C}{\text{patch}}$
$t_{S_{\text{dead}}}\rightarrow S_{\text{slow}}$Transition rate of carbon from deadwood stock $S_{\text{dead}}$ to slow decomposing soil stock $S_{\text{slow}}$$\tfrac{t_C}{\text{patch}}$
$t_{S_{\text{dead}}}\rightarrow S_{\text{fast}}$Transition rate of carbon from deadwood stock $S_{\text{dead}}$ to fast decomposing soil stock $S_{\text{fast}}$$\tfrac{t_C}{\text{patch}}$
$NEE$Net ecosystem exchange$\tfrac{t_C}{\text{patch}}$
$C_{GPP}$Carbon amount of gross productivity per patch$\tfrac{t_C}{\text{patch}}$
$C_{R}$Carbon amount released by total respiration per patch$\tfrac{t_C}{\text{patch}}$

Table 23: Disturbances (fire, landslide) state variables.

SymbolDescriptionUnit
$N_{D}$Number of individuals dying due to disturbances$\tfrac{1}{\text{cohort}}$
$P_{F_1}, P_{F_2}, P_{F_3}, P_{F_4}$Burning probabilities for the 4 fire tolerance levels-

Table 24: Lidar state variables.

SymbolDescriptionUnit
$d_{\text{Lid}}$Number of vegetation voxels above a focal voxel, corresponds to distance that the laser beam traveled within tree canopy space$\text{m}$
$P_{\text{Lid}}$Probability of a voxel to contain a Lidar return-